skip to main content


Search for: All records

Creators/Authors contains: "Parikh, Nil A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thermoset polymers and fiber-reinforced polymer composites possess the chemical, physical, and mechanical properties necessary for energy-efficient vehicles and structures, but their energy-inefficient manufacturing and the lack of end-of-life management strategies render these materials unsustainable. Here, we demonstrate end-of-life deconstruction and upcycling of high-performance poly(dicyclopentadiene) (pDCPD) thermosets with a concurrent reduction in the energy demand for curing via frontal copolymerization. Triggered material deconstruction is achieved through cleavage of cyclic silyl ethers and acetals incorporated into pDCPD thermosets. Both solution-state and bulk experiments reveal that seven- and eight-membered cyclic silyl ethers and eight-membered cyclic acetals are incorporated efficiently with norbornene-derived monomers, permitting deconstruction at low comonomer loadings. Frontal copolymerization of DCPD with these tailored cleavable comonomers enables energy-efficient manufacturing of sustainable, high-performance thermosets with glass transition temperatures of >100 °C and elastic moduli of >1 GPa. The polymers are fully deconstructed, yielding hydroxyl-terminated oligomers that are upcycled to polyurethane-containing thermosets having a higher glass transition temperatures than that of the original polymer upon reaction with diisocyanates. This approach is extended to frontally polymerized fiber-reinforced composites, where large-fiber volume fraction composites (Vf = 65%) containing a cleavable comonomer are deconstructed and the reclaimed fibers are used to regenerate composites via frontal polymerization that display properties nearly identical to those of the original. This work demonstrates that the use of cleavable monomers, in combination with frontal manufacturing, provides a promising strategy to address sustainability challenges for high-performance materials at multiple stages of their lifecycle. 
    more » « less
  2. Abstract In Fall 2020, universities saw extensive transmission of SARS-CoV-2 among their populations, threatening health of the university and surrounding communities, and viability of in-person instruction. Here we report a case study at the University of Illinois at Urbana-Champaign, where a multimodal “SHIELD: Target, Test, and Tell” program, with other non-pharmaceutical interventions, was employed to keep classrooms and laboratories open. The program included epidemiological modeling and surveillance, fast/frequent testing using a novel low-cost and scalable saliva-based RT-qPCR assay for SARS-CoV-2 that bypasses RNA extraction, called covidSHIELD, and digital tools for communication and compliance. In Fall 2020, we performed >1,000,000 covidSHIELD tests, positivity rates remained low, we had zero COVID-19-related hospitalizations or deaths amongst our university community, and mortality in the surrounding Champaign County was reduced more than 4-fold relative to expected. This case study shows that fast/frequent testing and other interventions mitigated transmission of SARS-CoV-2 at a large public university. 
    more » « less